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Abstract

Dynamic plastic buckling of a bar is analytically studied based on some simplifying assumptions. The bar is
simply supported and subjected to an axial step-force at its ends. The material is assumed to have linearly strain
hardening and the strain-rate e�ect is considered by employing Malvern's over-stress model. Shanley's assumption

of no unloading when plastic buckling occurs is adopted. A linear di�erential equation of motion of the bar is thus
established. A stability condition is then derived by means of the method of amplifying function. Expressions of
buckling half-wavelength and critical buckling load are obtained. The results are compared with those of a strain-

rate insensitive bar. It is found that the strain-rate e�ect has a signi®cant in¯uence on the dynamic plastic buckling
of bars. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Buckling of structures has continuously drawn engineers' attention because of the increasing
application of high strength, lower density materials in engineering. In some ®elds, such as
transportation and aerospace engineering, structures and their members are often subjected to dynamics
loads. Consequently, the well-developed classical theory of static buckling of structures is not applicable
and the theory of dynamic buckling is put forward (Lindberg and Florence, 1987).

Dynamic buckling di�ers from static buckling of structures in several aspects. First, dynamic buckling
is time-dependent, so that a key problem arising is how to determine the critical time, namely the time
when buckling initiates. Accordingly, a buckling criterion is required not only to determine the buckling
loads, as usually done in the classical analysis of static buckling, but also to deduce the buckling time.
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Secondly, stress waves appear in the structure immediately after the dynamic load (a pulse or impact) is
applied. Evidence has shown that dynamic buckling usually occurs in the initial period of the stress
wave propagation. Thus advanced studies on the dynamic buckling of structures should incorporate the
e�ect of stress waves. Thirdly, for dynamic buckling in plastic range, i.e. dynamic plastic buckling, the
strain-rate e�ect should be considered for the structures made of strain-rate sensitive materials. This
aspect is the main concern of the present paper. To ease mathematical derivation, so as to highlight the
physical signi®cance of the unique features of dynamic plastic buckling, the simplest structural member,
a straight bar, is examined in this paper.

In recent years, the strain-rate e�ect has been one focus of several studies of dynamic plastic behavior
of structures (Jones, 1989; Tam and Calladine, 1991; Karagiozova and Jones, 1995a, b). The study of a
structural model under impact revealed that, in some cases, the strain-rate e�ect is equally important to
the inertia e�ect (Su et al., 1995).

A main di�culty in theoretical analysis and numerical computation, e.g. using ®nite element method,
of dynamic plastic buckling of structures is the absence of a widely accepted criterion of stability.
Theoretically strict stability criteria based on the Liapunov second method have been applied to
dynamic elastic systems, namely conservative systems (Knops and Wikes, 1966; Jie, 1996), and limited
cases of nonconservative systems (Leipholz, 1980; Jie, 1997). Stability conditions given by the Liapunov
second method are usually su�cient but not necessary. On the other hand, the Liapunov second method
has found little use in the study of dynamic plastic buckling of structures due to the extensive di�culty,
or even impossibility, in forming the Liapunov functions. Lee (1977, 1978) proposed a concept of quasi-
bifurcation in dynamics of elastoplastic continua and derived a buckling criterion for a bar under an
axial plastic compressive wave. Wang and Ru (1985) established a stability criterion of energy and
applied it to deduce a stability condition of a cylinder shell under axial impact. So far the most
commonly used buckling criterion refers to the Method of Amplifying Function (MAF). In the MAF,
the ¯exural shape of a dynamically deforming bar is supposed to be compounded by a series of
harmonic modes, based on the mathematical concept of Fourier transformation. Each mode grows with
time at its own rate. Among them there exists an optimum mode which grows fastest with time. The
optimum mode should be taken as the buckling mode and its growth determines the buckling time. In
their pioneer work on dynamic plastic buckling of a ¯ying bar impacting on a rigid target, Abrahamson
and Goodier (1966) successfully applied the MAF to derive the buckling mode and found good
experimental agreement. Since the, the MAF has been broadly applied to analyze the dynamic buckling
of various kinds of structural members (Lindberg and Florence, 1987), e.g. bars, plates and shells.

A common method in studying the dynamic elastoplastic buckling of a bar is numerical
computations, e.g. via ®nite di�erence method (Havashi and Sano, 1972; Ari-Gur et al., 1982) and ®nite
element method (Jie, 1991). Some factors, which are very di�cult to be considered analytically, such as
large deformation, unloading in the plastic stage, stress wave propagation and strain-rate e�ect, etc., can
be included in the numerical computations. However, the computational methods have their own
drawback of only showing the overall e�ects of all the considered factors rather than the separate
e�ects. Besides, the convergence of computation is often di�cult to achieve for a dynamic plastic
problem. In contrast to numerical computations, simpli®ed models have been found to be e�ective in
describing the dynamic plastic buckling of bars; while these require relatively easy mathematical
treatments, they provide profound physical descriptions and comprehensive results (Jones and de Reis,
1980; Gary, 1983; Karagiozova and Jones, 1992a, b, 1995a, b, 1996a, b).

In a preliminary work (Jie, 1995), Malvern's over-stress model (Malvern, 1950, 1951) was adopted to
take into account the strain-rate e�ect in the analysis of dynamic plastic buckling of a perfectly
elastoplastic bar. The results were then compared with those of existing theory and the experiment of
6061-T6 aluminum bars (Abrahamson and Goodier, 1996). It has been found that the inclusion of the
strain-rate e�ect makes the theoretical predictions closer to the experimental ones. The present paper
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extends the study of Jie (1995) to a linearly strain hardening elastoplastic bar. The Malvern over-stress
model is still employed to establish the dynamic stress±strain �s±e� relation of the bar. To model the
problem analytically, the following basic assumptions are made in order to linearize the governing
di�erential equation of the bar:

(i) The impact load is a step function of time.
(ii) Shanley's assumption (Shanley, 1947) for quasi-static plastic buckling of bars holds in the dynamic

case, i.e. there is no unloading in the plastic stage when buckling initiates.
(iii) The e�ect of stress waves on dynamic buckling is neglected.
(iv) The elastic strain rate is ignored.

For the present con®guration, the assumption (ii) has been a�rmed by experiments (Jie et al., 1992).
Under the basic assumptions, a condition of stability, the buckling half-wavelength and the critical

buckling load are deduced by means of the MAF. The results can retrograde to those of the strain-rate
insensitive bar (Abrahamson and Goodier, 1966) as well as the rate-sensitive elastic, perfectly plastic bar
(Jie, 1995), respectively. It is found that the strain-rate e�ect brings about some notable characteristics
for dynamic plastic buckling of bars which have not been revealed before.

2. Governing equations

For linearly strain hardening elastoplastic materials, an approximation of Malvern's uniaxial dynamic
relation is (Malvern, 1950, 1951)

E_e � D
ÿ
sÿ sy ÿ Ehe

�� _s �1�

where �_� � @=@ t��, t is time, E Young's modulus, Eh the strain hardening modulus, sy the quasi-static
yield stress. D is a material constant; for most metals, D = 106 sÿ1 (Malvern, 1950, 1951).

Consider a bar in Fig. 1 with length l and two ends hinged. y�x, t� denotes the ¯exural de¯ection with
respect to the initial imperfection y0�x� of the bar. Hence, the total de¯ection of the bar is
y�x, t� � y0�x�. A pair of step force, expressed as P(t ) = 0 when t< 0 and P(t ) = P when te0, is
axially applied on the both ends of the bar. Here, P is constant. The dynamic equilibrium equation of
the bar is

rA �y � ÿM 00 ÿ P
ÿ
y 00 � y 000

� �2�

where �� 0 � @=@x��, r is the material density, A is the cross-sectional area of the bar and M is the
bending moment. From eqn (1) and the assumptions (2) and (4), it is derived that

Fig. 1. A simply supported bar under axial dynamic loading.
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M � EI _y 00

D
� EhI�y� y0� 00 �3�

in which I is the second moment of the cross-section.
Suppose y � kw, y0 � kw0, x � kx, t � kt=c, where k � ��������

I=A
p

is radius of gyration of the cross-section
and c � ���������

E=r
p

is velocity of longitudinal elastic wave. The nondimensional dynamic equilibrium
equation of the bar is then written as

_w 0000 � agw 0000 � gmw 00 � g �w � ÿgmw 000 ÿ agw 00000 �4�
Now in eqn (4) and following equations, �_� � @=@t�� and �� 0 � @=@x��. a � Eh=E is the coe�cient of
strain hardening; g � kD=c is a nondimensional parameter representing the strain-rate e�ect and the
velocity of longitudinal elastic wave in the bar; and m � P=EA is the nondimensional dynamic load.

3. Conditions of stability and buckling

The basic idea of the MAF is observed in the following analysis. By using Fourier transformation
w�x,t� � �10 g�Z,t� sin xZ dZ and w0�x� �

�1
0 g0�Z� sin xZ dZ, with Z being the nondimensional wave

number and g�Z,t� or initially g0, being the amplitude of the corresponding harmonic mode, eqn (3) is
recast as

g �g � Z4 _g �
ÿ
agZ4 ÿ gmZ2

�
g �

ÿ
gmZ2 ÿ agZ4

�
g0 �5�

whilst the initial conditions are given by

g�Z,0� � 0, _g �Z,0� � 0 �6�
By de®nition, the amplifying function of the system, which relies on the wave number Z and varies

with time, is the ratio of the total amplitude of the harmonic mode at any time with its initial value, i.e.

Am�Z,t� � g� g0
g0

�7�

Let the identifying function of eqn (5) be D � Z8 � 4g2Z2�mÿ aZ2�. If D � 0, it is solved from eqns (5)
and (6) that

Am�Z,t� �
 
1� Z4t

2g

!
exp

 
ÿ Z4t

2g

!
�8�

It is evident that

lim
t41Am�Z,t� � 0,

so that in this case buckling will not occur.
However, if D 6� 0, then we obtain

Am�Z,t� � g
ÿ
y2ey1t ÿ y1ey2t

�����
D
p �9�

with
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y1 �
ÿ
ÿ Z4 � ����

D
p �

2g
and y2 �

ÿ
ÿ Z4 ÿ ����

D
p �

2g
�10�

In this case only when

mÿ aZ2 > 0, lim
t41Am�Z,t� � 1

so buckling can occur.
Thus, a necessary (but not su�cient) condition of buckling is

Z2<
m
a

�11�

Under condition (11), the dominant buckling mode should make Am�Z,t� grow fastest with t (or time
t ); in other words, this mode should make y1�Z� take its maximum value.

Let

dy1�Z�
dZ

� 0,

it is derived that

2mZ6

g2
�
ÿ
2aZ2 ÿ m

�2 �12�

Eqn (12) gives a formula to determine the buckling mode of a rate sensitive bar. For rate insensitive
materials, g � 1, eqn (12) becomes

Z2 � m
2a

�13�

Eqn (13) is in accordance with the previous result given by Abrahamson and Goodier (1966). For
elastic, perfectly plastic materials, a � 0 in eqn (12), so that

Z6 � mg2

2
�14�

Thus, a formula derived by Jie (1995) is regained.
Taking Z2 as variable, roots of eqn (12) can be expressed analytically (see Appendix A). There is only

one real root for Z2, whilst two other roots are complex numbers, i.e. they include imaginary part. On
the other hand, expression of the real root is too complicated to be applied practically. For these
reasons, one (and only one) approximate solution of eqn (12) is required.

Ordinarily parameter Z is far less than 1. To approximately solve eqn (12), initially its left side is set
to be zero. Consequently, the ®rst order recurrent solution is obtained, which is expressed in eqn (13).
Then by substituting eqn (13) into the left side of eqn (12), the second order recurrent solution is
obtained as

Z2 � m
2a

2
m2

4ga5=2
�15�

It is easy to prove that in order to make y1 a maximum, the solution given by eqn (15) should take
the negative sign, i.e.
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Z2 � m
2a
ÿ m2

4ga5=2
�16�

in which m=2ga3=2 < 1. It can be proved that generally the solution given by eqn (16) makes d2y1=dZ2 < 0
(see Appendix B).

By substituting eqn (16) into eqn (12) and rearranging the latter, the error caused by recurrence
solution is calculated as

err � 2mZ6

g2
ÿ
ÿ
2aZ2 ÿ m

�21 3m5

8g3a9=2
�17�

Suppose G is the wave length of the buckling mode. The nondimensional form of G is l � G=k. On
the other hand, the nondimensional wave length has a certain relationship with the nondimensional
wave number, i.e. l � 2p=Z. From eqn (16), nondimensional buckling half-wavelength is solved as:

l
2
� p�������������������������

m
2a
ÿ m2

4ga5=2

s �18�

The possible buckling mode in Fig. 1 should satisfy G=2E l or l=2E xl, where xl � l=k denotes the
nondimensional length of the bar. Consequently, a condition of stability is derived as

m
a
ÿ m2

2ga5=2
<

2p2

x2l
�19�

Suppose the nondimensional critical buckling load of the bar is mcr � Pcr=EA, then it should satisfy

mcr

a
ÿ m2cr

2ga5=2
� 2p2

x2l
�20�

4. Computation and discussion

Consider a bar made of steel with E= 200 GPa, a = 0.018 and D � 106 sÿ1. Dimension of its cross-
section is supposed to be 10� 2:5 mm2. Comparisons between the computed results in the present paper
and the previous results given by Abrahamson and Goodier (1966) for rate insensitive materials are
shown in Figs 2 and 3, respectively.

Fig. 2 shows the variations of the buckling half-wavelength with respect to the step force applied, in
the rate-sensitive and rate-insensitive cases. It is observed that the half-wavelength of a rate-sensitive bar
(made of steel) is signi®cantly di�erent from that of a rate-insensitive bar. If the bar is rate-insensitive, it
is well known that its buckling half-wavelength decreases monotonically with the increment of dynamic
load. If the bar is rate-sensitive, there exists a characteristic load m0 (about 0:34� 10ÿ3 in the example),
at which the half-wavelength renders its minimum value. For a dynamic load less than m0, the half-
wavelength decreases with the increase of the load, similar to the case of a rate-insensitive bar. However,
for a dynamic load greater than m0, the half-wavelength increases with the increase of the load, which
seems beyond the existing understanding on the buckling mode of a bar. Because the half-wavelength of
buckling mode cannot exceed the length of the bar, only parts of the curves below the line, l=2 � xl, are
signi®cant. In the case of rate-sensitive bar, the line, l=2 � xl, has two intersections with the l=20m
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curve. The ®rst intersection determines the critical buckling load mcr, whilst at the second intersection,
the half-wavelength will remain to be equal to the length of the bar with the increase of the applied
load. It is deduced from Fig. 2 that, for a rate-sensitive bar, two di�erent applied loads may lead to
identical buckling mode, which is a unique feature of dynamic plastic buckling in this case.

In Fig. 3, the critical buckling load mcr is plotted against length of the bar, xl, separately for rate-
sensitive and rate-insensitive bars. The mcr0xl curve for the rate-sensitive bar has two branches, namely

Fig. 3. Buckling load vs length of the bar.

Fig. 2. Half-wavelength of buckling mode vs step load.
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the upper branch and the lower branch. Obviously, the upper branch is unrealistic for the critical
buckling load. In Fig. 3, it is observed that when the bar is long, the critical buckling load of a rate-
sensitive bar is rather close to that of a rate-insensitive bar. However, for a relatively short bar, a
greater di�erence exists between the two cases, and the di�erence increases with the reduction in the
length of the bar. That is to say, the strain-rate exerts a minor e�ect on the dynamic plastic buckling of
a long bar but an essential e�ect on that of a rate-insensitive bar. It is also observed that the stable
domain of a rate-sensitive bar is broader than that of a rate-insensitive bar. It is found that there exists
a critical length xlcr (about 45.5 in the example) for the rate-sensitive bar. If the length of the bar is less
than xlcr, the stable domain becomes in®nite; in other words, there is no critical buckling load for the
bar. Consequently, the buckling will never occur. This is a rather astonishing result that has never been
explored before. In common knowledge, there always exists a critical buckling load for a bar, if the
possible fracture of the bar is disregarded. Therefore, the above result needs a careful experimental
veri®cation. A reasonable explanation to this theoretically predicted phenomenon is that a short bar will
become too strong and hard to lose its stability due to the strain-rate e�ect. On the other hand, for a
bar with length greater than xlcr, the buckling load decreases with the increase of the length, similar to
the case of a rate-insensitive bar.

From eqn (17), it is estimated for the above example that the error caused by recurence solution is in
the order of 10ÿ6, which is obviously a small quantity. Therefore, the recurence solution given by eqn
(16) is su�ciently precise.

In general, it is not di�cult to derive that, characteristic load is

m0 � a3=2g �21�

Besides, the critical length of the bar, for which the critical buckling load approaches in®nite, is

xlcr � 2pgÿ1=2aÿ1=4 �22�

Discussion is necessary in regard to the dynamic elastoplastic s±e relation employed in the analysis. It
should be pointed out that the Malvern's over-stress model is actually unrealistic for rate-sensitive
metals, e.g. structural steel. The model somewhat exaggerates the increase of stress with strain rate. A
commonly used s±e relation for dynamic plastic analysis is the Cowper±Symonds model, which is a
power law formula (for details see section 1.3, Stronge and Yu, 1993). The Malvern's model is adopted
in this paper mainly because it can lead to analytical results with not much loss of the physical
characteristics of the problem. In fact, a simpler linear constitutive relation which is thought to be
backed up by actual data, was used by Lindberg and Florence (1987) in the analysis of dynamic plastic
buckling of plates and shells.

In this study, wave propagation in the bar is neglected. Therefore, a limit of end-shortening speed
must exist under which the present solution is appropriate. The limit speed depends on the buckling
time. For the wave propagation to be negligible, the buckling time must be greater than that for plastic
longitudinal wave front traveling through the whole bar. However, as has been stated, a widely accepted
buckling criterion is desired to determine the buckling time. This task may be left for later
investigations.

Finally, it is easy to ®nd out that all the results in this paper are appropriate to dynamic buckling of
a viscoelastic bar of Maxwell type.
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5. Conclusions

Dynamic plastic buckling of a bar under axial dynamic load has been analytically studied with the
strain-rate e�ect being considered, and the following conclusions can be drawn.

(i) Expressions of the buckling half-wavelength and the critical buckling load are derived for a rate-
sensitive bar made of Malvern material.

(ii) There exists a characteristic dynamic load in the load vs buckling half-wavelength curve of a rate-
sensitive bar, at which the buckling half-wavelength takes its minimum value. When the applied load
is smaller than the characteristic load, the buckling half-wavelength decreases with the increase of
the load, whilst when it is larger than the characteristic load, the buckling half-wavelength increases
with the increase of the load. Two di�erent dynamic loads may cause the same buckling mode.

(iii) The stable domain of a bar under axial load is broadened by the rate sensitivity of its material.
(iv) Existence of a critical length is revealed for a rate-sensitive bar. For a bar shorter than the critical

length, buckling will never occur.
(v) The strain-rate has less e�ect on the critical buckling load of a long bar.
(vi) General expressions of the characteristic load and the critical length are presented.

Appendix A. Solution of eqn (12)

In eqn (12), let z � Z2, there is

z3 ÿ 2a2g2

m
z2 � 2ag2zÿ mg2

2
� 0 �A1�

The solution of eqn (A1) is obtained by employing the software MATHEMATICA. Three roots are,
respectively,

z1 � f1 ÿ f2

6
���
23
p

mf3
� f3

3
���
43
p

m

z2 � f1 �
ÿ
1� i

���
3
p �

f2

12
���
23
p

mf3
ÿ
ÿ
1ÿ i

���
3
p �

f3

6
���
43
p

m

z3 � f1 �
ÿ
1� i

���
3
p �

f2

12
���
23
p

mf3
ÿ
ÿ
1ÿ i

���
3
p �

f3

6
���
43
p

m
�A2�

where

f1 � 2a2g2

3m

f2 � 24am2g2 ÿ 16a4g4
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f3 �
������������������������������������������������������������������������������������������������������������������
27m4g2 ÿ 72a3m2g4 � 32a6g6 � 3

���
3
p �������������������������������������

27m8g4 ÿ 16a3m6g6
p

3
3

q
�A3�

Appendix B. Extreme value problem of yyy1

In eqn (10), let z � Z2, there is

y1 �
ÿz2 � �����������������������������������

z4 � 4g4z�mÿ az�
p

2g
�B1�

It is proved that

dy1
dz

����
z� m

2aÿ
m2

4a2
��
a
p

g

10 �B2�

The second order derivative of y1 is

d 2y1
dz2
� ÿ1

g

8<:1� 2
ÿ
z3 ÿ 2ag2z� mg2

�2�
z4 � 4g2z�mÿ az�

�3=2 � 2ag2 ÿ 3z2�
z4 � 4g2z�mÿ az�

�1=2
9=; �B3�

Numerical calculation shows that, when the parameters a, g and m take those values with physical
signi®cance, the Z2 (or z) given by eqn (16) makes the right side of eqn (B3) less than zero, which means
at this point y1 takes its maximum value.
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